Journal of Systematics and Evolution10.1111/j.1759-6831.2012.00236.x201251130-43The unbearable uncertainty of Bayesian divergence time estimationMario DOS REIS, Ziheng YANG
Journal of Systematics and Evolution10.1002/jse.2362012n/a-n/aThe unbearable uncertainty of Bayesian divergence time estimationMario DOS REIS, Ziheng YANG,
PLOS ONE10.1371/journal.pone.02504172021164e0250417Predicting regional influenza epidemics with uncertainty estimation using commuting data in JapanTaichi Murayama, Nobuyuki Shimizu, Sumio Fujita, Shoko Wakamiya, Eiji Aramaki
Methods in Ecology and Evolution10.1111/2041-210x.12032201345442-452Estimating consensus and associated uncertainty between inherently different species distribution modelsEmmanuel S. Gritti, Anne Duputié, Francois Massol, Isabelle Chuine,
ASME 2020 14th International Conference on Energy Sustainability10.1115/es2020-16492020Uncertainty in Predicting the Start-Up Time and Losses for a High Temperature Particle Receiver due to Solar Resource VariabilityMuhammad M. Rafique, Graham Nathan, Woei Saw,
Climatic Change10.1007/s10584-015-1503-220151341-2327-339Predicting potential epidemics of rice diseases in Korea using multi-model ensembles for assessment of climate change impacts with uncertainty informationKwang-Hyung Kim, Jaepil Cho,,
Value in Health10.1016/j.jval.2010.10.0022011141202-203Uncertainty analysis is inherently BayesianJohn W. Stevens,
Epidemics10.1016/j.epidem.2014.01.0012014735Erratum to “Virus-induced target cell activation reconciles set-point viral load heritability and within-host evolution” [Epidemics (2013) 174–180],
The 7th International conference on Time Series and Forecasting10.3390/engproc20210050502021Quantifying Uncertainty for Predicting Renewable Energy Time Series Data Using Machine LearningPhil Aupke, Andreas Kassler, Andreas Theocharis, Magnus Nilsson, Michael Uelschen
Physical Review E10.1103/physreve.91.0428112015914Time evolution of predictability of epidemics on networksPetter Holme, Taro Takaguchi,